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Abstract. The ongoing energy transition towards large shares of renew-
able generation poses challenges for hydro power producers. We revisit
the problem of optimising the operation of hydro power plants using
mathematical modelling, but utilising computer science concepts in the
design of the models and configuration of these models. In particular we
use a configuration process based on the SPEA2 evolutionary algorithm
to identify module based configurations of the model and explore the
trade-off between the scale of the model and it’s runtime. It is hoped
that such methods can assist in identifying configurations that are the
best fit in terms of runtime, realism and accuracy.

1 Introduction

Due to the energy transition throughout Europe there is an ongoing shift from
using conventional energy sources such as fossil or nuclear to renewables such
as photo-voltaic or wind power. However, such power sources are intermittent
due to weather conditions and therefore create larger fluctuations in the energy
system. These fluctuations can also be seen in the energy prices with a significant
decline of the average price levels and a flattening of daily price peaks due to
solar injections. Hydro power (HP) is seen as a viable option for stabilizing the
system, as it can in effect act as a battery. Even without pump storage, HP has
the ability to release its water reservoirs when other renewable energy sources
cannot produce. This allows a hydro plant to stabilise the system as well as
profit of high energy prices during times of low renewable feed-in.

HP is a mature technology with over a century of utilization history and is
therefore well understood, including it’s optimisation. Highly accurate mathe-
matical models have already existed for some time. However, recently there have
been several factors contributing to complicating the problem and therefore forc-
ing us to revise our methods.

The first factor is that due to the less predicable power production, and
the resulting fluctuations in the market prices, the operation plans needs to be
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quickly adapted. As planning relevant information becomes only available short
term, the resulting method for operation planning has to have low runtimes. Also
markets, like the intra-day market emerged, that can be a highly lucrative market
for HP, but only allows for a short time frame for the required calculations.

In addition to having less time, the problem has also become larger, as the
intra-day market works on 15 minute time slots, with a possible reductions to
10 minutes. Using such smaller time slots greatly increases the complexity of
the problem and the amount of data needed. In addition, further environmental
constraints have to be integrated also increasing the problems size.

Even though optimisation becomes harder, it also becomes more important.
Like other conventional power plants also HP plants struggle with the currently
low energy prices. In particular as they have to pay fees to use the water and
are exempted from most green energy benefits.

One solution might seem to shift from mathematical modelling to more
heuristic orientated methods. But in this field mathematical modelling is well
established, and existing models should stay in use, when possible. In addition,
most market models use mathematical modelling and must be compatible.

However, there are many aspects in mathematical modelling that can benefit
from fundamental concepts in computer science. This includes design, develop-
ment and deployment aspects. In this paper we focus on the configuration of
the mathematical models. Current models are problem specific and are hard to
solve. However, in some instances it can be beneficial to use a lighter model with
a lower runtime, so that more up-to-date data can be used. We will provide here
an approach towards a more flexible model that can adjust its scale.

Our idea bases on the assumption that a mathematical model is based on
different modules describing aspects of the problem. For each aspect alternative
modules can exist. By combining different modules a complete model can be
created. The combination of modules is the configuration of the model. Based
on the idea that mathematical models are wrong, but some are useful. [3], we are
going to investigate the trade-off between usefulness of a model and its resulting
computational complexity. Therefore, we will investigating the search space of all
different configurations of these models in terms of scale and the required time
to solve them. To investigate this question we propose an easy to implement
method to show the trade-off between the scale of the model and it’s runtime
by investigating the Pareto front. The Pareto front is expected to be interesting
both in a research and practical sense.

The optimal configurations and the pattern in which they can be observed
may be of research interest, as they may point to an easy-hard-easy pattern [6].
The aim is to identify patterns in the optimal configurations within the Pareto
front for different case studies (different hydro plants) to define general guidelines
that can assist in designing models in the future.

This is a research in progress paper. First we discuss some related literature.
In Section 3 the problem definition is presented, followed by our approach in
Section 4. We then provide first results (Section 5), and finally outline our future
work and expectation.
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2 Background

Using mathematical models for the planning of the ideal operation of a hydro
plant is a well known and tested method. This is the case for both single site
models [5, 7] and cascading (multisite) models [4, 9, 1]. Even large models, such as
the HP plant system in Brazil consisting of 150 hydro plants, can be modelled
using this method [8]. However, there are, to our knowledge, no other works
that aims to use a modular design to develop these models and utilise this
design as part of a configuration process to ascertain ideal configurations. As
for the configuration of the model, it is a question of how simple the model
should be. Operations research is very familiar to the concept that Essentially,
all models are wrong, but some are useful. [3] as well as with the somewhat
opposing principle of Occam’s razor [2], stating that with competing hypotheses
that predict equally well, the one with the fewest assumptions should be selected.
For the field of operations research, it is often difficult to justify a model to be
simple but accurate enough expect through practical testing. In this paper, we
attempt to create a more systematic approach. In addition, through identifying
the Pareto front, we hope to find an easy-hard-easy pattern [6].

The configuration is multi-objective as we aim to minimise the required run-
time to solve the model and reduce the scale of the model. Multi-objective prob-
lems usually consider the Pareto front as a solution, which are proved to be
NP-hard to compute. [10] Therefore heuristics are commonly used, of which
evolutionary methods have proven to be effective off-the shelf algorithms [10].

3 Problem definition

3.1 Optimisation Problem

The optimisation problem of a HP plant can be defined in relatively simple terms
and is similar to a mathematical representation of a battery. However, we must
consider that we have the possibility of trading on several markets. In this Paper
we consider the optimisation problem in basic form for simplicity. However,
we consider the problem to be scalable, as many technical, environmental and
market constraints can be added. The basic form is shown below:

max.
∑
i,m

ci,mPi,m (1)

Pi,m = Ri,mα (2)

Si = Si−1 + Ii −
∑
m

Ri,m (3)

Si ≤ Smax (4)

Si ≥ Smin (5)
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Where ci,m is the price at time interval i for market m, Pi,m is the produced
energy for time interval i and market m, Ri,m is the water released from the
reservoir at time interval i for market m, α is the efficiency of the turbine (the
amount of energy produced per water used), Si is the storage level at time
interval i, Ii is the inflow of water into the reservoir at time interval i, Smax is
the maximal and Smin is the minimum storage level of the reservoir. This model
is of course a strict simplication, it lacks technical and environmental constraints.

3.2 Configuration Problem

Below we describe the configuration of the model used to solve the optimisation
problem defined above. Each configuration is defined by which markets are used.
Using all markets increases the scale of the model and therefore directly affects
the time required to solve it. The configuration problem can be summarised as
finding the Pareto front of this trade off. The Problem is defined formally below:

Given a configuration x in the set of all possible configurations A and func-
tions fi(x) for each objective i, x is said to be Pareto optimal if no other member
x∗ of A dominates x. x∗ dominates x if the following is true:

fi(x) ≤ fi(x
∗)for all i wherefi(x) < fi(x

∗)for at least one objective i (6)

For the configuration of the HP model, there are two objective fr(x) and fs(x)
where fr(x) represents the runtime of configuration x and fs(x) represents the
scale of the model in configuration x.

4 Method

This section describes our own approach to address the previously described
problems, utilising the General mathematical Modelling System (GAMS), the
IBM CPLEX solver and the SPEA2 evolutionary algorithm [11].

4.1 Mathematical Model Design

As previously described, we aim at creating scalable models that can be easily
configured. An object orientated inspired design was used to map functions to
features, resulting in a group of functions, or module, to represent separate
functionalities contained within a separate file. A main file containing a list of
import statements can be adjusted to simply exclude a file and therefore it’s
feature. For example, each function for the intra-day market is contained in a
module and therefore it is possible to switch off trading on the intra-day market
by excluding the intra-day market module. As the model grows, new modules are
added that either replace modules or compliments them. Additional constraint
can be written in new modules and added, for instance a new turbine for a
new case study can be written and then added in a simulation for the new
case study. The entire model is implemented using GAMS and once configured,
CPLEX is used to solve it. This modular design has many benefits similar to
object orientated design, including abstraction, mapping modules or real life
objects, better maintainability and deployment.
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Data: N : population size, N : elite population size, T Max number of
generations

Result: P t the non-dominated set

Initialise population P0 with randomly generated individuals and empty set P 0

Set t=0
while t > T do

for all x in P0 and P 0 do
f(x) = N −Nd where f(x) is the fitness function and Nd is the number by
which the individual in dominated by

end for
Move non-dominated individuals from Pt and P t to P t+1.
if size of P t+1 > N then

use clustering method to reduce the size of P t+1

end if
for all x in Pt and P t do

move Pt to Pt+1 based on roulette wheel selection
end for
while Size of Pt+1 < N do

breed x∗ from P t and Pt

add x∗ to Pt+1

end while
t = t + 1

end while
return PT

Algorithm 1: SPEA2 algorithm

4.2 Configuration

Each set of modules used is considered to be a configuration. A list of modules
that are required for the basic model to run for a particular case study is used to
ensure those models are always switched on and the remaining modules are con-
sidered by the configuration process. The configuration process is based on the
SPEA2 algorithm. It uses Pareto domination in it’s fitness function, a separate
population of non-dominated individuals to implement elitism and a clustering
algorithm to stop convergence. Details are given in the listing of Algorithm 1.

As mentioned, we use the runtime and scale of the model as objectives. As
the runtime is dependent on the hardware used and other software running,
we use the CPLEX ticks as a platform independent measure of runtime. We
use the number of modules as a preliminary measure of the scale of the model.
Although this is a relative simple method it has shown to be fairly dependable.
In the future, we plan to exchange this measure with more sophisticated ones.

We have chosen an evolutionary algorithm for the following reason. First, a
population based approach is well suited for finding the Pareto front, as an entire
set of Pareto optimal solutions are contained in the elite population, reducing
the number of requiring reruns. Second, an iterative population based approach
effectively investigating an unknown search space, as it provides the stability
of the scale measurement by identifying if related individuals also have similar
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runtimes. In addition, evolutionary algorithms are highly configurable, allowing
us to update separate components, such as the initialisation of the population,
to achieve better performance.

5 Initial results

5.1 Optimisation

Some results of solving the mathematical model are shown in Fig. 1. We added
markets in order, therefore a model with 4 markets has markets 1-4 activated.
Each market has a separate implementation including the day-ahead market,
intra-day market, primary and secondary reserve market, positive and negative
tertiary reserve market. These markets modules are test implementations and
contain fictive test data. The modules are complementary and can be combined
in one model.

In general, it shows how increasing the number of markets that the model is
able to trade on also increases the revenue, showing that there is a clear profit
gain in being able to trade on all markets. However, market 2 appears to never be
favourable which is why trading in 1 or two markets in Fig. 1 shows no difference.
Trading in all 6 markets or all expect market 2 also have the same results (not
shown in Fig. 1). Thus, it may be of use to exclude market 2 from the model.

5.2 Configuration

In this section we present our initial results. These results are only viable as a
proof of concept, but are not yet complete, mostly due to the fact that the model
is still at an early stage and therefore is simply not large enough yet to create
a large enough search space for the evolutionary algorithm. For this section we
use a small scale model as a proof of concept, with simple implementations of

Fig. 1. Initial results of the configuration process, showing the pareto front
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Fig. 2. Initial results of the configuration process, showing the Pareto front

the technical aspects and several markets to choose from. The model is scalable
only through the choice of which and how many markets to trade on. The evo-
lutionary algorithm may seem obsolete in these initial results due to the small
scale, especially as the clustering algorithm is never activated due to the lim-
ited number of possible Pareto optimal solutions. Fig. 2 shows the final results,
outlining the Pareto front. Fig. 2 demonstrates a clear relationship between the
scale measurement and runtime, which demonstrates the feasibility of using the
number of modules as a measurement of scale. It shows that configurations with
similar scale also have a similar runtime and that there is a proportional rela-
tionship between the runtime and the scale. However, more details about how
stable and what type of relationship exists will only be obtained once a large
model is implemented.

6 Future work and expectations

The research project is still in an early stage. In the next steps we will focus
on expanding the mathematical model, greatly increasing the search space of
the configuration problem. As we are going to apply our approach in real-world
case studies, competing with industry standards, we have to implement more
technical and environmental constraints and more sophisticated market models.
In total the project will contain two case studies, first a single HP plant, and
later cascading HP plants, for which operation planning has to be done in one
planning process, due to their physical dependencies.

Beside increasing the complexity of the model, we also need to revise our
measurements for the size of the problem. The currently used number of modules
is just an intermediate step, and more sophisticated models needs to be defined.

Once the model is of a larger scale, we will improve the configuration. There
are large improvements that can be done for the evolutionary algorithm, espe-
cially once we understand the search space better. Knowledge of previous runs



8

can be used in the initialisation of the population, reducing the time to find
the Pareto front. To assist in the population spreading along the Pareto front a
modified mutation operator can be used to favour mutation to a larger or smaller
scale model. Additionally, the fitness evaluating requires to solve the model and
therefore is time consuming. To speed-up evaluation, a hash map can be used to
look-up solutions instead of recomputing them.

We also need to analyse in more depth the search space, especially whether
the stability we observed above also exists in larger models, and whether the
simple relationship between scale and runtime remains or if fluctuations or even
easy-hard-easy curves can be observed. This insights can be used to identify
areas that promise to have a low runtime despite a relatively large model.
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