Transaction costs: Transaction costs are real resources that are required to create and operate an institution. They are not directly linked to value creation but occur when goods and services are transferred across separable interfaces. (Williamson, 1979, 1985)

Dimensions of Transactions in Nuclear Decommissioning

Uncertainty
- Unknown degree of on-site radiological contamination of buildings and components
- Structural integrity of ageing concrete structures
- ...

Frequency
- Achievability of economies of scale through repetition of tasks and standardization uncertain
- Economies of scope limited due to complexity of radiation management
- ...

Asset Specificity
- Diverse nuclear power plant fleet structures limit standardization possibilities
- Historical neglect of decommissioning necessity during construction
- Specialized tools necessary
- ...

Theoretical Organizational Approaches to Decommissioning

Make or Buy?

“a firm [has] […] a role to play in the economic system if it [is] possible for a transaction to be organized within the firm at less cost than would be incurred if the same transaction were carried out through the market” – Coase (1988, 19)

-> degree of vertical integration also known as “MAKE or BUY”

– Nuclear (decommissioning) industries in deregulated US markets and the United Kingdom both experience introduction of private, third-party, contractors to the organization of nuclear decommissioning

– We analyze these observed models on an organizational level (Tier 1); contracting on Tier 2, i.e., individual tasks (e.g., component segmentation) are not analyzed

– The results for the observed third-party introduction schemes are shown on the right
From 2004 onwards, the UK introduced the “Parent-Body-Organization” (PBO) model to nuclear decommissioning.

The goal was to introduce competition to nuclear decommissioning while keeping (financial) liabilities for decommissioning and waste management with the state.

After initial efficiency gains, the scheme was retracted in steps for all nuclear assets as inefficiencies became apparent.

Today, the UK’s decommissioning industry is fully vertically integrated.
Nuclear Decommissioning Organization in the United States

Two “new” organizational models have emerged

Operation and Conventional Decommissioning
- Corporate Utility
 - Ownership
 - NPP Operator
 - Operation License
 - Nuclear Power Plant
 - Tier 2 Contractor
 - "Tier 2" tasks outsourced to third-party contractors or conducted "in-house"

License Acquisition
- Corporate Utility
 - Ownership
 - NPP Operator
 - Transfer of License, Assets, Liability, and Ownership
 - Nuclear Power Plant
 - Decommissioning Company
 - Operation License
 - "Tier 2" tasks outsourced to third-party contractors or conducted "in-house"

License Stewardship
- Corporate Utility
 - Ownership
 - NPP Operator
 - Transfer of License, Assets, Liability Return Upon Completion
 - Nuclear Power Plant
 - Decommissioning Company
 - Operation License
 - "Tier 2" tasks outsourced to third-party contractors or conducted "in-house"
Nuclear Decommissioning Organization in the United States
License Stewardship and Acquisition Case Studies

License Stewardship

- EnergySolutions has international experience in nuclear decommissioning (former PBO in UK!)
- Leverages extensive asset base for decommissioning (low-level waste, waste processing, transportation, logistics)
- Completed decommissioning of Zion 1-2 and LaCrosse. Ongoing work at TMI-2 and Kewaunee
- Decommissioning of Zion completed within 13 years (2007-2020)
- Possibly Incentivized by access to Decommissioning Trust Fund and provision of waste removal route

License Acquisition

- All-inclusive fuel management contracts across U.S. and globally (wet and dry storage, ISFSI construction, spent fuel loading services)
- Supplier of NRC licensed dry cask storage
- Decommissioning subsidiary (HDI) currently overseeing decom at four NPPs (latest Palisades)
- Ongoing plans for consolidated interim waste storage facility in New Mexico ~ legal challenges
Nuclear Decommissioning Organization in the United States
Chances and Risks for International Decommissioning Industry?

These models can only function in the US because some necessary conditions are met (Stenger et al. (2019)):
• Flexible license transfer mechanisms
• Plant-specific nuclear decommissioning trust funds
• (financial) waste management responsibilities pooled with the US federal government

<table>
<thead>
<tr>
<th>Chances</th>
<th>Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Faster decommissioning reduces safety and security risks and possible reduces cost and sites can be reused for other (industrial) purposes</td>
<td>• Profit-maximizing actors might cut corners in terms of security and safety</td>
</tr>
<tr>
<td>• Efficiency gains and learning might benefit future decommissioning projects as standardization and new technologies are implemented and might be implemented elsewhere!</td>
<td>• Plants with limited DTF funds, high uncertainty or asset specificity might not be viable for model and might have to be “cleaned up” by final liability holder, which could be the state (or other actor)</td>
</tr>
<tr>
<td>• Clearly defined waste management pathways</td>
<td>• secure interim waste storage pathways limit the necessity to provide final solution</td>
</tr>
</tbody>
</table>
Thank you for your attention!

Muhammad Maladoh Bah
WWZ / Wirtschaftswissenschaftliche Fakultät
Professur Energieökonomie
Universität Basel
Peter Merian-Weg 6
4002 Basel
Switzerland
E-Mail: muhammadmaladoh.bah@unibas.ch
Tel.: +41 61 207 55 28

Alexander Wimmers
Workgroup for Infrastructure Policy (WIP)
Technische Universität (TU) Berlin
Straße des 17. Juni 135
10623 Berlin
Germany
E-Mail: awi@wip.tu-berlin.de
Tel.: +49 30 314 758 37
Some References

This research is freely accessible

DIW Data Documentation 104: Decommissioning of Nuclear Power Plants: Regulation, Financing, and Production

https://dx.doi.org/10.18723/diw_ddc:2023-104

https://edoc.unibas.ch/93620/1/20230213094735_63e9f9279b5a5.pdf

Project Webpage via FoNEW: https://fonew.unibas.ch/